Improved biofuel catalysts from new nanosphere model

October 11, 2012 |

In Iowa, researchers at Iowa State and the DOE Ames Laboratory have published a new model of chemical activity within nanospheres. Nanospheres, tiny spheres of silica with a honeycomb of tunnels, or pores, throughout their structure and embedded with catalytic groups, were developed in the last decade as a solution to finding a reusable catalyst for converting biomass into fuel. While scientists are now able to produce these nanospheres in ways that control the size of the pores and the type and position of the catalytic groups, understanding precisely how these chemical reactions take place will allow further fine-tuning and predictable control of catalytic processes.

A collaborative team of scientists at the laboratory’s Division of Chemical and Biological Sciences have determined that though these particles were designed with hollow passages specifically to maximize the surface area available for chemical reactions, these reactions don’t happen uniformly across the entire surface area of the particle. Researcher describes the reaction behavior as being similar to a busy grocery store, where customers roam multiple aisles, grabbing items off the shelves. Because the aisles get pretty full of customers throughout, most of the action will occur near the ends of the aisles, where shoppers can get in easily, grab items, and leave easily. Shoppers in the middle of the aisles will have a harder time passing each other and getting out of the aisle with their items. In the same way, the chemical reactions deep within the pores are limited.

Category: Research

Thank you for visting the Digest.