Research into antennae may help boost biofuel production yields

December 14, 2016 |

In Washington, the Department of Energy’s (DOE) Office of Science (SC) supports research at the Photosynthetic Antenna Research Center (PARC), a DOE Energy Frontier Research Center. Researchers at PARC are studying how antenna complexes organize their components and protect themselves from damage.

The photosynthetic antenna complex is a collection of pigments and proteins that capture and funnel energy from light. Antenna complexes are very diverse, with their size, structures, and even types of pigments differing between organisms.

The green sulfur bacteria, or Chlorobiaceae, comprise one of the most unique families of photosynthetic organisms. These peculiar bacteria live deep in the sediments of ponds, lakes, and oceans where they encounter only a few photons of light a day. In this environment, the bacteria are seldom exposed to oxygen and don’t produce it.

But what green sulfur bacteria lack in exposure to light, they make up for in efficiency. They have two antenna complexes that work together: chlorosomes and the Fenna-Matthews-Olson (FMO) complex.

As SC-supported researchers said in a paper in the New Journal of Chemistry, “Chlorosomes are perhaps Nature’s most spectacular light-harvesting antennas.”

Using this new understanding, scientists may be able to modify the bacteria that make nitrogen from the soil available for plants to use. These bacteria don’t tolerate oxygen well, so improving their ability to tolerate oxygen could increase yields of food and biofuel crops.

From self-assembly to self-protection, scientists’ work is illuminating how these tiny antenna complexes operate inside every green leaf you spot on a forest stroll.

Category: Research

Thank you for visting the Digest.