WSU, PNNL researchers find new way to characterize cellulose, advance bioproducts

March 26, 2017 |

In Washington state, researchers at Washington State University Tri-Cities and Pacific Northwest National Laboratory have found a new way to define the molecular structure of cellulose, which could lead to cheaper and more efficient ways to make a variety of crucial bioproducts. For the first time, researchers revealed the differences between the surface layers and the crystalline core of cellulose by combining spectroscopy processes that use infrared and visible laser beams to analyze the structure of molecular components. The findings appear this month in Scientific Reports.

Yang said that although plant cell walls are complex and dynamic, recent advances in analytical chemistry and genomics have substantially enhanced understanding of cellulosic biomass recalcitrance while simultaneously highlighting the remaining knowledge gaps.

Bin Yang, co-author and WSU Tri-Cities associate professor of biological systems engineering, said cellulose is one of the most abundant organic compounds on Earth. Understanding the cellulosic biomass recalcitrance, or resistance to degradation, at the molecular level is a key step toward overcoming the fundamental barrier to making cellulosic biofuels cost-competitive, he said.

“Cellulose is commonly known as a product that is difficult to break down and convert into other useful products,” said co-author Hongfei Wang, former chief scientist in the physical sciences division at PNNL and current professor of chemistry at Fudan University in Shanghai. “Using our nonlinear vibrational spectroscopic technique, we can resolve some questions associated with the recalcitrance of cellulosic biomass and, in turn, more efficiently convert the product into a usable commodity.”

“This discovery is significant because it not only challenges the traditional understanding of cellulose materials, it provides further insight into the surface and bulk chemistry of cellulosic fibers, building on a novel spectroscopic tool to characterize such structural differences,” said Arthur J. Ragauskas, Governor’s Chair in biorefining for Oak Ridge National Laboratory and at the University of Tennessee, Knoxville. He is an expert on the subject, but not involved in the research.

He said the discovery of the nonuniformity and the structure of cellulose in the study can improve the efficiency of industrial application of cellulose.

More on the story.

Category: Research

Thank you for visting the Digest.