A novel biofuel system for hydrogen production from biomass

March 22, 2020 |

In South Korea, a research team at Ulsan National Institute of Science and Technology, or UNIST, has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen. The system decomposes lignin with a molybdenum (Mo) catalyst to produce high value-added compounds, and the electrons extracted in the process effectively produce hydrogen.

A novel technology has been developed for hydrogen production from the process, which involves electron that is produced during the decomposition of biomass such as waste wood. The result produced after biomass decomposition is a high value-added compound, and it is a two-stone technology that improves the efficiency of hydrogen production.

An eco-friendly way of producing hydrogen is the electrolysis of water (H2O). The voltage is applied to the water to produce hydrogen and oxygen at the same time. However, in the currently reported technology, the oxygen generation reaction (OER) is slow and complicated, and hydrogen production efficiency is low. This is because hydrogen gas (H2) is produced by hydrogen ions (H+) as electrons, because these electrons come from the oxygen evolution reaction.

Through the study, Professor Ryu and his research team have developed a new biofuel system that uses lignin as an electron donor in a way to reduce the overall inefficiency of the oxygen evolution reaction (OER). This is the principle of using molybdenum-based inexpensive metal catalysts (PMA) to break down lignin at low temperatures, and extract the electrons produced in the process to produce hydrogen. The new device has been designed to move electrons from lignin, along the wire to the electrode where the hydrogen evolution reaction (HER) occurs.

In addition, vanillin or carbon monoxide (CO), which are produced via lignin breakdown is very useful substance for various industrial processes. “Lignin, the second most naturally abundant biomass, is difficult to decompose. However, using molybdenum-based catalysts (PMA) it was easily degraded at low temperatures,” says Research Assistant Professor Yuri Choi, the co-author of the study.

 

 

Print Friendly, PDF & Email

Tags: , , , , ,

Category: Research

Thank you for visting the Digest.