MIT researchers developing decentralized fertilizer production using hydrogen

June 16, 2020 |

In Massachusetts, MIT chemical engineers are working to develop a smaller-scale alternative, which they envision could be used to locally produce fertilizer for farmers in remote, rural areas, such as sub-Saharan Africa. Fertilizer is often hard to obtain in such areas because of the cost of transporting it from large manufacturing facilities.

In a step toward that kind of small-scale production, the research team has devised a way to combine hydrogen and nitrogen using electric current to generate a lithium catalyst, where the reaction takes place.

Most previous efforts to perform this reaction under normal temperatures and pressures have used a lithium catalyst to break the strong triple bond found in nitrogen gas molecules. The resulting product, lithium nitride, can then react with hydrogen atoms from an organic solvent to produce ammonia. However, the solvent typically used, tetrahydrofuran, or THF, is expensive and is consumed by the reaction, so it needs to be continually replaced.

The MIT team came up with a way to use hydrogen gas instead of THF as the source of hydrogen atoms. They designed a mesh-like electrode that allows nitrogen gas to diffuse through it and interact with hydrogen, which is dissolved in ethanol, at the electrode surface.

This stainless steel, mesh structure is coated with the lithium catalyst, produced by plating out lithium ions from solution. Nitrogen gas diffuses throughout the mesh and is converted to ammonia through a series of reaction steps mediated by lithium. This setup allows hydrogen and nitrogen to react at relatively high rates, despite the fact that they are usually not very soluble in any liquids, which makes it more challenging to react them at high rates.

Category: Research

Thank you for visting the Digest.